Interface between intramembranous and endochondral ossification in human foetuses.

نویسندگان

  • S Hayashi
  • J H Kim
  • S E Hwang
  • S Shibata
  • M Fujimiya
  • G Murakami
  • B H Cho
چکیده

In the head and neck of human mid-term foetuses, the interface between areas of endochondral ossification and adjacent membranous (intramembranous) ossification is extensive. Using 8 foetal heads at 15-16 weeks, we have demonstrated differences in the matrices and composite cells between these 2 ossification processes, especially in the occipital squama and pterygoid process. Aggrecan-positive cartilage was shown to be invaded by a primitive bony matrix that was negative for aggrecan. At the interface, the periosteum was continuous with the perichondrium without any clear demarcation, but tenascin-c expression was restricted to the periosteum. In contrast, the interface between the epiphysis and shaft of the femur showed no clear localisation of tenascin-c. Versican expression tended to be restricted to the perichondrium. In the pterygoid process, the density of CD34-positive vessels was much higher in endochondral than in membranous ossification. The membranous part of the occipital was considered most likely to contribute to growth of the skull to accommodate the increased volume of the brain, while the membranous part of the pterygoid process seemed to be suitable for extreme flattening under pressure from the pterygoid muscles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yap/Taz transcriptional activity in endothelial cells promotes intramembranous ossification via the BMP pathway

Osteogenesis is categorized into two groups based on developmental histology, intramembranous and endochondral ossification. The role of blood vessels during endochondral ossification is well known, while their role in intramembranous ossification, especially the intertissue pathway, is poorly understood. Here, we demonstrate endothelial Yap/Taz is a novel regulator of intramembranous ossificat...

متن کامل

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

The ossification of the metacarpal and phalangeal bones in human foetuses.

An evaluation was made of the ossification level of the metacarpal and phalangeal bones in human foetuses of both sexes from the 4th to the 9th month of gestation. Our results indicate that ossification of phalangeal bones 1 to 5 always started at the distal end of the phalanx and endochondral ossification prevailed in the proximal phalanx of the thumb.

متن کامل

Induction and patterning of intramembranous bone.

The primary focus of this article is to review intramembranous bone development, that is, ossification that takes place directly. Comparisons with endochondral ossification (ossification with a cartilage precursor) will be made in order to illustrate the differences between these two modes of ossification and to highlight the comparatively sparse information that is available about intramembran...

متن کامل

Notch Signaling is Enhanced During Endochondral Bone Regeneration Relative to Intramembranous Regeneration

INTRODUCTION: Bone regeneration occurs through a series of spatiotemporal events influenced by the mechanical environment, various local and systemic factors, and the embryological origin of the specific bone. Long bone fractures treated with flexible fixation heal primarily through endochondral ossification. Following an initial inflammatory phase, mesenchymal cells proliferate and undergo cho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Folia morphologica

دوره 73 2  شماره 

صفحات  -

تاریخ انتشار 2014